Category Archives: Uncategorized

How to Use Electrical Rule Checks to Identify SERDES Design Issues

Many designs use SERDES interfaces to move data. Check out these common layout requirements related to SERDES designs, and see how electrical rule checking can help identify issues on PCB boards that violate requirements.

Electric Vehicle Charging Opens New Avenues for Semiconductor Market

The charging infrastructure for electric vehicles is expanding throughout the United States, buffered by large investments from the automotive industry, government initiatives, and international calls to reduce carbon emissions. As a result, the market for semiconductors used in these charging stations is expected to grow rapidly over the next few years, according to a new report from chip industry research firm IHS Technology.

The revenues earned from the semiconductors built into charging stations was around $44 million in 2014, according to IHS Technology. However, the new report predicts that as more electric vehicles hit the road and the demand grows for additional charging stations, the global market for these components will reach approximately $233 million in 2019.

Related

Gallery: All-Electric Vehicles Continue Driving Forward

Apple Sets Internal Ship Date for Electric Vehicle Project

Electric-Racing Safety Vehicle Equipped with Wireless Charging

The bill of semiconductors used in charging stations is vast, ranging from the power semiconductors that channel electricity between the charger and the vehicle, to the communication chips linking the station to the smart grid. The report adds that the electric vehicle companies are trending toward systems-on-chip (SoCs) that not only provide faster control, but also include the memory chips required for secure communications.

In the United States, the infrastructure surrounding electric vehicles is still extremely limited relative to the nearly 253 million vehicles that were on the road in 2014, only a tiny fraction of which were electric. According to the Alternate Fuels Data Center, the Department of Energy’s clearinghouse for information on electric vehicles, there are now 11,578 electric charging stations and 29,436 public charging outlets spread across the United States, excluding private charging stations.

Noman Akhtar, an industrial semiconductors analyst for IHS, says that fast charging is a necessary step toward the widespread usage of electric vehicles and building out the infrastructure around them. And higher power ratings are required to support shorter charging times. “Electric vehicle charging stations with higher ratings require more power semiconductors, especially discrete semiconductor components,” he says.

Charging equipment for electric vehicles is classified by the rate at which the batteries are charged. AC Level 1 chargers, which are normally compatible with household outlets, add about 2 to 5 miles of range to an electric vehicle per hour of charging time, according to the Alternate Fuels Data Center. Although they requires special charging equipment, AC Level 2 chargers add about 10 to 20 miles of range per hour of charging time.

On the other hand, direct-current (DC) fast chargers represent the core technology within the public charging infrastructure, adding 50 to 70 miles of range in about 20 minutes, according to the Alternate Fuels Data Center. These stations are used by Nissan, Mitsubishi, and Tesla Motors in several different configurations and charging speeds. Tesla Superchargers can apparently provide 170 miles of range in about a half hour, delivering up to 120 kW of DC power directly to the battery.

In 2014, according to the IHS report, the average price for semiconductor components in a level-two charging station was about $143. By comparison, semiconductor components used in the latest fast-charging DC chargers now cost more than $1,000. DC chargers are almost universally favored in public infrastructure because they provide faster charge times, but it has become increasingly common for hotels and parking garages to invest in lower-cost AC chargers for vehicles parked in the same place for hours. 

On another front, semiconductors are also required for the communications modules within the charging stations. In addition to smart grid compatibility, charging stations will eventually gain features like credit card readers, billing software, high-resolution displays, automated diagnostics, controlled power flow, and internal metering—all of which will require processors and other semiconductor components.

The IHS Technology report came as the climate change summit in Paris ended earlier this month, punctuated by an international accord reached by 195 countries to lower greenhouse gas emissions and mitigate the effects of climate change. According to a 2013 study by the Environmental Protection Agency, about 27% of the United States’ greenhouse gas emissions come from the transportation industry, only slightly less than the emissions from generating electricity.

Accurate Statistical Analysis of SERDES Links

Statistical analysis is capable of reaching BER levels as low as 10-12 and beyond. Still, statistical simulation is unable to consider some important effects/impairments, mostly associated with non-stationary or non-linear behavior such as:

  • Correlation of logical states in the input pattern
  • Data-dependence of transition waveform shapes, manifesting non-LTI behavior
  • Accurate consideration of transmit jitter and noise, including data-dependent

This white paper proposes a way to accurately consider all these effects in a single statistical analysis flow.

Accurate Statistical Analysis of SERDES Links

Statistical analysis is capable of reaching BER levels as low as 10-12 and beyond. Still, statistical simulation is unable to consider some important effects/impairments, mostly associated with non-stationary or non-linear behavior such as:

  • Correlation of logical states in the input pattern
  • Data-dependence of transition waveform shapes, manifesting non-LTI behavior
  • Accurate consideration of transmit jitter and noise, including data-dependent

This white paper proposes a way to accurately consider all these effects in a single statistical analysis flow.

New Research Injects Optimism into Quantum Computers

Quantum bits are the basic logic elements of quantum computers, as they correspond to the binary bits processed and stored by transistors in modern computer chips. Now, researchers at the Technical University of Munich (TUM) have taken the latest step toward incorporating quantum devices into computer technology, inventing semiconductor nanostructures that process information using quantum bits. 

The invention of the nanostructures, however, was not the most significant aspect of the research. Of greater importance, the researchers said, was the ability to preserve the quantum bits contained within the nanostructures. Making certain that quantum bits, also known as qubits, remain intact while being stored has long been one of the major obstacles to making reliable quantum computers.

Related

All-Optical Switch Could Push Electronics Out of Future Processors

Ion Trap Marks A Step Toward Practical Quantum Computing

The Quest For Zero Power Logic

A team of physicists headed by Alexander Bechtold and Jonathan Finley at TUM’s Walter Schottky Institute created the nanostructures by evaporating indium gallium-arsenide (GaA) onto GaA substrates. The different lattice spacing of the two semiconductor materials creates strain at the interface between the crystal grids, producing what are known as quantum dots.

These quantum dots are extremely small lumps of semiconductor material that contain qubits and loosely correspond to electronic transistors. When the quantum dots are cooled down to liquid helium and excited by optical pulses, a single electron can be trapped in each dot. The electron’s spin serves as the information carrier, where “spin up” or “spin down” correspond to the standard logical information units 0 and 1. Laser pulses can read and alter the states optically from outside nanostructure.

Because they operate in a quantum-mechanical manner, however, the qubits can exist simultaneously as both 1 and 0, or some point in between. Being able to perform multiple operations at once could make quantum computers millions of times more powerful than modern supercomputers. They are thought to be ideal processors for breaking data encryption codes or searching large databases.

In spite of its potential speed benefits, there exist mechanisms through which the quantum data can be inadvertently lost. The strain between the semiconductor materials can generate tiny electric fields that result in “uncontrolled fluctuations in the nuclear spins” and alter the information, Bechtold says. It was also observed that electron spins are influenced by the spin of surrounding atomic nuclei.

The research, which was published in the journal Nature Physics and supported in part by the Los Alamos National Laboratory in New Mexico, introduced a method to reverse this quantum amnesia. “Both loss channels can be switched off when a magnetic field of around 1.5 tesla is applied,” says Bechtold. “This corresponds to the magnetic field strength of a strong permanent magnet. It stabilizes nuclear spins and the encoded information remains intact.”

Quantum dots are one of several competing technologies trying to at least coexist with electronic transistors in logic gates and computer processors. Optical computers, for instance, imprint data onto light waves and process information as it travels through silicon chips. All-optical devices can operate with extremely fast switching speeds and high energy efficiency because they exhibit lower heat loss, better signal-to-noise ratios, and reduced susceptibility to interference.

The TUM research team is optimistic about the future of their quantum computers because they were built from common semiconductor materials compatible with standard manufacturing processes—another major stumbling block to building a working quantum computer. The quantum dots can even be equipped with electrical contacts, allowing them to be controlled not only with lasers but also using pulses of electricity.

“Overall, the system is extremely promising,” says Finley. “The semiconductor quantum dots have the advantage that they harmonize perfectly with existing computer technology since they are made with similar semiconductor material.”

DDR4 Board Design and Signal Integrity Verification Challenges

This paper, originally presented at DesignCon and nominated for a best paper award, includes an investigation of DDR4's Pseudo Open Drain driver and what its use means for power consumption and Vref levels for the receivers. Later, the paper looks at DDR4 system design examples and the need for simulating with IBIS power aware models versus transistor level models for Simultaneous Switching Noise characterization.

Optimize FPGAs for Software Radio Applications

Recently updated, this handbook reviews the latest FPGA  technology and how it can be put to use in software radio systems. FPGAs offer significant advantages for implementing software radio functions such as digital downconverters and upconverters. These advantages include design flexibility, higher precision processing, lower power, and lower cost. Pentek SDR products that utilize FPGA technology and their applications are also presented.

Get your free download of this handbook now.

Standard Manufacturing Process Mints Nanoporous Chip Materials

A research team from Belgium’s University of Leuven, the National University of Singapore, and Australia's CSIRO has adapted a production process normally reserved for semiconductors to create metal-organic frameworks (MOFs), a class of material that could lay the foundation for advanced microelectronics.

Metal-organic frameworks consist of a nanoporous grid of both organic molecules and metal ions. The material takes shape as the organic molecules push the metal ions apart, forming a regular pattern of small holes (or nanopores) that researchers have compared to a microscopic sponge. With all these pores, the material’s surface area ranges from 1,000 to 5,000 square meters per gram.

"The net result is a structure where almost every atom is exposed to empty space: one gram of MOF crystals has a surface area . . . the size of a football field,” says CSIRO researcher Mark Styles. "Crucially, we can use this vast space to trap other molecules, which can change the properties of a material.”

More Microelectronics Research

New Research Injects Optimism into Quantum Computers

All-Optical Switch Could Push Electronics Out of Future Processors

New Research Pushes Skyrmions Closer to Magnetic Memory Devices

As reported in the journal Nature Materials, the researchers have uncovered a more efficient method for producing thin films of this material, which in the future could be grown directly on tiny electronic circuits. In laboratory experiments, the researchers demonstrated that the material could be made through chemical vapor deposition (CVD), a widely used manufacturing process for thin film semiconductors.

This revelation could represent a major step toward using the technology in microelectronics. “Vapor-phase deposition is already a common method to produce high-tech devices,” says Ivo Stassen, lead researcher from the KU Leuven Center for Surface Chemistry and Catalysis. As a result, new technologies using MOFs can be developed more quickly. Among these are sensors, nanochip components, and high-density batteries.

The massive surface area of the material could also help extinguish beliefs about the physical limits of semiconductor nodes. Manufacturers might be able to squeeze an unprecedented number of transistors into the material's huge surface area without taking up much space. MOFs have also shown potential as low-k dielectric semiconductor materials, which promise to reduce parasitic capacitance, boost switching speeds, and lower heat dissipation in tiny electronic devices.

Professor Rob Ameloot, the other lead researcher from the Center for Surface Chemistry and Catalysis, notes that the lack of a mainstream production process has largely confined MOFs to the laboratory. Until now, researchers have only been able to grow the material using a liquid solvent. Ameloot points out, however, that MOF crystals produced through this process are typically too large and impure for integrated electronics. In addition, using liquid solvents is not ideal for growing MOFs directly on electronic components.

In contrast, the Leuven research team was able to adapt a mass production process to the unique chemistry of MOF thin films. “We first deposit layers of zinc and let them react with the vapor of the organic material,” explains Stassen. “The organic material permeates the zinc, the volume of the whole expands, and it is fully converted into a material with a regular structure and nanopores.”

Stassen said that to refine the procedure, the researchers are collaborating with the Leuven-based semiconductor research center imec, which specializes in nanoelectronics. He notes that, along with imec, the university has submitted patents on the new process.

Imec has been investigating new ways to implant smaller and smaller transistors into computer processors and other electronics. The research center recently unveiled new advances that are laying the groundwork for silicon CMOS devices beyond the 5-nm node. However, the center also noted that it has begun investigating other approaches beyond silicon, such as spintronics and 2D materials, which could produce even smaller nodes.

Ultimately, the potential metal-organic frameworks is in its versatility. In December 2013, researchers from Sandia National Laboratory in New Mexico made one of the first major breakthroughs with the material, proving that they could create MOF thin films that conduct electricity. In a New York Times article, the researchers expressed hope that they would soon be able to customize the material's structure, coding electrical behaviors that are difficult to achieve with normal semiconductors.

Weightless-P Sacrifices Range and Power, Adds Speed and Flexibility

The Weightless SIG, one of a growing number of standards bodies in the market for Internet of Things (IoT) networks, is trying to balance power consumption and transmission strength with its latest wireless standard. The group recently published the Weightless-P standard, which it says provides the reliability and security of a "carrier-grade" network while consuming little power.

The new standard outlines a bidirectional network operates in the sub-GHz spectrum using FDMA/TDMA modulation and occupies 12.5 KHz narrowband channels to help reduce power consumption. To reduce interference and maintain the highest possible capacity, Weightless-P controls transmit power for the downlink and uplink. At the same time, data rates adapt between 200 bits/s to 100 kbits/s depending on the quality of the network connection. It has a roughly 2-km range.

Related

First SDK Released for Weightless-N Low-Power IoT Standard

Low-Power Wide-Area Networks Gain IoT Footholds

White Space Radio Gives New Life To Old Spectrum

Weightless-P has been under development since last August. Weightless SIG revealed that it had partnered with M2Communications (M2COMM), a Taiwan-based networking company, to lead the project. Development kits and hardware for Weightless-P, including base stations and endpoints, will be available in early 2016, according to a statement on the Weightless SIG website.

The Weightless-P standard belongs to a class of low-power wide-area networks (LPWAN) that are being designed for sophisticated industrial systems. In the future, these systems are expected to use thousands of wireless sensors to gather valuable data about manufacturing and infrastructure. Many industrial companies, including General Electric and Siemens, have spent the last few years working to connect machines with powerful servers that can analyze this data.

Weightless-P is the third low-power standard the Weightless SIG has developed. The first, Weightless-W, is designed to operate in the television “white space” spectrum. The more recent standard, Weightless-N, places an emphasis on an extremely wide area of coverage instead of high data rates. Though limited to one-way communications, Weightless-N supports farther range and lower power consumption than Weightless-P, which trades these benefits to a certain extent for higher performance.

In a presentation at the 2014 ARM Tech Symposia, Fabien Petitgrand, a technical staff member at M2COMM, said that low-power, low-cost, and highly reliable connections are the main requirements for industrial IoT systems. He stressed that cellular signals and mesh networks—such as those introduced by Bluetooth and Thread in recent years—consume too much power, and cannot scale as effectively as their LPWAN counterparts.

The low frequency signals used by the Weightless-P standard feed into these requirements of power and cost. With lower frequencies, network operators are able to design smaller, lower-power, and lower-cost antennas. Weightless-P operates with transmit power up to 17dBm to allow operation from coin-cell batteries. When idling, power consumption is below 100 uW.

In recent years, developments in the industrial IoT have caused a flood of new LPWAN standards. Other technologies include SigFox, Dash 7 Alliance Protocol, LoRaWAN, nWave, IEEE 802.11ah, and LTE Cat-M, among others still under development.

What’s the Difference Between Gaming and PC Motherboards?

I have been building PCs from the ground up for decades, and the motherboard has always been a critical part—especially when it comes to gaming PCs. Gamers demand more performance and often push the limits, whereas a regular PC user could care less. Higher frame rates for first-person shooters can be the difference between a top-notch experience and a bland, jerky, annoying gaming session.

Way back in the old days, the motherboards were pretty similar with gaming platforms, including higher-end graphics cards. Things have changed significantly, such that gaming motherboards are much different than a conventional PC motherboard (although the details can be subtle).

Related

Where Has My PC Gone? It’s Gone Gaming

Reworking the PC for the IoT

Where Have All the Gamers Gone?

The easiest way to see the difference is to take a look at a couple of the latest gaming PC motherboards. The first is Super Microcomputer’s (Supermicro) C7Z170-SQ motherboard (Fig. 1) designed for Intel’s latest, sixth-generation, Skylake LGA 1151-based chips.

Those subtle differences start with a high quality PCB of woven E-glass coated with epoxy resin. Coupled with heavier copper traces, this allows a system to deliver improved signal integrity, especially in overclocking conditions. Overclocking is where the processor is driven at higher clock rates than normal. This usually increases operating temperatures that can reduce processor life if not addressed by other means, such as better heat sinks that include water-cooled solutions.

Not all processor chips can be overclocked. Usually a processor chip will be “unlocked” like the Intel Core i7 6600K. Likewise, the motherboard will need to support non-standard clock rates that the user can select.

The capacitors for power supplies are also a major item on gaming motherboards. The C7Z170-SQ uses X5R or X7R class ceramic chip capacitors exclusively, and there are several hundred per motherboard. A bad capacitor can lead to intermittent operation or a completely dead motherboard.

Sockets on gaming motherboards also tend to be of a higher quality than regular motherboards. The C7Z170-SQ uses thicker 15-micron gold plating compared to the typical 2 micron found on typical connectors.

The choice of supporting processor chip set will be an issue with gaming motherboards, since it determines the possible peripheral complement. The C7Z170-SQ uses the Intel Z170 Express Chipset (Fig. 2). It adds gigabit Ethernet, up to 20 additional x1 PCI Express ports, six SATA ports, 10 USB 3.0 ports, 14 USB 2.0 ports and high-definition 7.1 audio. The C7Z170-SQ couples the HD audio with a  Realtek ALC1150 multichannel DAC (digital-to-analog-converter). It exposes only some of the peripheral ports, including all the 6 Gbit/s SATA ports, an Ethernet port, six USB 3.0 ports, and six USB 2.0 ports. There is also a 10 Gbit/s USB 3.1 port provided by an additional chip and linked to a USB Type-C connector on the rear panel.

The diagram shows how the processor chip supports a x16, a pair of x8, or an x8 and two x4 lane configurations. Typically a gaming PC provides multiple x16 slots for video cards via a PCI Express switch chips linked to the x16 interface. The C7Z170-SQ has three PCI-E 3.0 x16 sockets but only one has a x16 connection. One is a x4 and the other a x8 although the x16 is then run as a x8 connection. There are three x4 sockets, although one supports only x1 connections.

Some gaming motherboards support AMD’s Crossfire and NVidia’s SLI (scalable link interface) for combining multiple GPU boards into a single system. This allows the collection of GPUs to drive a single set of displays usually at a higher frame rate and resolution. These types of motherboards normally have a heftier PCI Express switch providing x16 links to three PCI Express x16 sockets. The challenge is to utilize all that bandwidth otherwise the extra potential throughput is wasted.

One change that is showing up in newer motherboards is the M.2 socket. Things get interesting with the M.2 because it supports SATA, x1 PCI Express or x4 PCI Express connections. It requires matching support from the motherboard and the M.2 board. For example, Samsung’s 256 Gbyte SM951 M.2 module (Fig. 3) uses a x4 PCI Express-based NVMe interface. It would not work in a socket that only supports SATA, although it would work in a socket that only had a x1 PCI Express interface, since PCI Express can adapt to the number of available lanes.

The back panel for a gaming motherboard is pretty similar to a conventional motherboard. The Supermicro C7Z170-SQ back panel (Fig. 4). It retains a PS/2 socket for a legacy keyboard or mouse. There are HDMI, DVI and Display Port sockets that are driven by the built-in video support. Most general users would utilize one of these but most gamers would install a video card with its own output. Still, the built-in interfaces can be useful in a multiple screen configuration. Most of the connectors dwarf the tiny USB Type-C connection to the left of the six audio sockets on the right side.

Cooling a Gaming PC

Now we take a step back and look at cooling. This is typically an add-on part of the gaming solution like an additional GPU board. At minimum, a PC processor needs a heat sink, and high-end processors like the Core i7 used by gamers is especially hot. A large heatsink and fan are the minimum, but liquid cooling is often used, as it is more efficient and can handle the additional heat due to overclocking.

One example is Corsair’s Hydro Series H110i GT (Fig. 5). This has a 280-mm radiator with a pair of SP140L PWM fans. It is connected by tubes to the heat exchange unit that sits atop the processor. This has a lower profile than most forced air solutions, although the overall liquid cooling solution is larger.

The H110i GT is Corsair Link-compatible. This allows the system temperature monitor to adjust the color of the LED lighting found on many gaming PC cases.

The chassis is also a major consideration with a gaming PC to handle both the motherboard and cooling system. For example, the Supermicro S5 chassis (Fig. 6) can handle 240-mm cooling systems like the Corsair Hydro Series H105 or 280-mm units like the H110i. The chassis can handle up to nine large fans at once.

Using liquid cooling for the processor is just the starting point. There are other chips that can get rather warm and require cooling, such as the GPU(s), memory, and support chips on the motherboard. Gigabyte has a number of motherboards that tie in the latter, including the GigabyteGA-Z170X-SOC FORCE (Fig. 7)has G1/4 thread fittings on the support heat sinks that allow them to be tied into a system liquid cooling system that can also include the processor, GPU(s), and memory.

The radiator is shared by all the devices within the cooling system. Tubes connect the various components, with liquid flowing through the entire system. GPU video boards require matching support if they are to be included in the cooling system.

The UEFI BIOS

One item that will be found on all new motherboards is a UEFI BIOS. A UEFI BIOS supports larger storage devices and provides incremental functional improvements for new devices. It also supports features like secure boot.

Most non-gaming PC motherboards can be used for playing high-end games, and the addition of a GPU board will help, but a gaming motherboard will be worth the cost if you are looking for the best gaming experience.